Courbes elliptiques pour la cryptographie

Description du cours

  • Systèmes d’équations algébriques et généralités de géométrie algébrique. Courbes algébriques (théorème de Bézout, diviseurs, courbes algébriques sur les corps finis). Illustration en théorie des codes.
  • Courbes elliptiques (généralités, loi de groupes, endomorphismes, isogénies, Frobenius, polynômes de division, courbes elliptiques sur C, Q, Fq).
  • Nombre de points sur les corps finis (borne de Hasse, Algorithme de Schoof)
  • Utilisation des courbes elliptiques en cryptographie.
  • Arithmétique des courbes elliptiques sur les corps finis (systèmes de coordonnées, systèmes de représentation de la courbe)
  • Multiplication scalaire efficace (Double and Add, Fenêtre glissante, chaînes d’addition, Yao, Lim-Lee, Montgomery ladder)
  • Attaques par canaux cachés basiques (SPA, DPA, fautes) et contre mesures
  • Multiexponentiation et application à la méthode GLV/GLS
  • Attaques connues (courbes anormales, couplages, restriction aux scalaires de Weil)
  • Protocoles standard (ECDSA, ECMQV, Nyberg Ruppel, GPS)
  • Revues et conférences importantes, bibliothèques de multiprécision et de cryptographie

Compétences à acquérir

Être en mesure de mettre en place de façon sûre et efficace un système de sécurité basé sur l’utilisation des normes les plus récentes de cryptographie à base de courbes elliptiques.

Mots-clés

Courbes elliptiques, multiplication scalaire, arithmétique efficace, attaques par canaux cachés.

Biographie des enseignants

Sylvain Duquesne est professeur en Mathématiques à l’Université de Rennes 1 depuis le 1er septembre 2008 et actuel directeur de l’IRMAR. Son domaine de recherche concerne la théorie des nombres et plus particulièrement l’arithmétique et l’algorithmique sur les courbes algébriques, ainsi que les applications en cryptographie. Il participe au projet SafeTLS soutenu par l’ANR.

Elie Eid est doctorant en mathématiques à l’Institut de recherche mathématique de Rennes (IRMAR) depuis octobre 2018, sous la direction de Reynald Lercier et Xavier Caruso.

Ce site utilise des cookies afin d’améliorer votre expérience utilisateur et de réaliser des statistiques d’audience.
J'accepteJe refuseEn savoir plus